МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет биологический

УТВЕРЖДАЮ		
Декан биологиче	ского	
факультета	B.B.	
Демидчик		
« »	2019	Γ.

ПРОГРАММА

вступительного экзамена в аспирантуру по специальности 03.01.05-физиология и биохимия растений

СОСТАВИТЕЛИ:		
Вадим Викторович Деми	дчик, декан би	<u>ологического факультета</u>
Белорусского государственно	го университета, до	октор биологических наук,
доцент;		
Владимир Михайлович Юри	н, профессор кафед	ры клеточной биологии и
биоинженерии растений	Белорусскогогосудар	оственного университета,
доктор биологических наук, п		· · · · · · · · · · · · · · · · · · ·
Оксана Геннадьевна Яковет	• •	и клеточной биологии и
биоинженерии растений Бе	елорусского госуда	рственного университета,
кандидат биологических наук		a
Галина Григорьевна Филипцо		
биоинженерии растений Белор	русского государство	енного университета,
кандидат биологических наук	доцент	
РАССМОТРЕНА И РЕКОМ	ЕНДОВАНА К УТІ	ВЕРЖДЕНИЮ:
Кафедрой клеточной биолог	тии и биоинженерии	растений
Протокол от 9 сентября	№ 2	
2019Γ.		
Заведующий кафедрой		И.И. Смолич
	(подпись)	(инициалы, фамилия)
_		
Советом факультета		
Протокол от 26 сентября	№ 2	
2019г.	_	
Председатель Совета		В.В. Демидчик
	(подпись)	(инициалы, фамилия)

(подпись)

Ответственный за редакцию

О.Г. Яковец (инициалы, фамилия)

СОДЕРЖАНИЕ ПРОГРАММЫ

Раздел 1.ВВЕДЕНИЕ

Тема 1.1

Предмет физиологии растений

Молекулярные, физико-химические, экологические и эволюционные аспекты физиологии растений. Объект физиологии растений, его особенности. Разнообразие объектов, характеризующихся фототропным образом жизни. Задачи физиологии растений. Этапы развития физиологии растений, ее связь с общим развитием биологии и практикой. Основные научные центры, занимающиеся проблемами физиологии растений в Беларуси и за рубежом. Тема 1.2.

Проблемы современной физиологии растений.

Тематика и задачи новых разделов физиологии растений, таких как геномика, феномика, метаболомика, биоинформатика, системная биология растений, молекулярная биотехнология и др. Физиология растений и проблемы современной цивилизации: генетическая модификация организмов, глобальное потепление, экологические изменения, устойчивое производство продуктов питания и биотоплива, поддержание биоразнообразия.

Раздел 2.СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ РАСТИТЕЛЬНОЙ КЛЕТКИ

Тема 2.1

Молекулярная структура компонентов растительной клетки, особенности их строения в связи с биологической функцией.

Клеточная стенка. Понятие апопласта и симпласта. Цитоплазма. Ядро. Пластиды. Рибосомы, митохондрии, вакуоль, плазмодесмы, микротрубочки, микрофиламенты, пероксисомы, лизосомы. Эндоплазматический ретикулум. Аппарат Гольджи. Физико-химические свойства цитоплазмы, ее взаимодействие с внешней средой. Структура и функция мембран растительной клетки. Проницаемость мембран.

Тема 2.2.

Принципы регуляции физиологических процессов на клеточном уровне. Принципы регуляции физиологических процессов на клеточном уровне. Функциональное взаимодействие отдельных компартментов клетки. Жизненный цикл растительной клетки.

Раздел 3.ФОТОСИНТЕЗ

Тема 3.1

Общие закономерности и значение фотосинтеза

Физико-химическая сущность фотосинтеза и его роль в процессах энергетического и пластического обмена растительного организма. Общие закономерности и значение фотосинтеза

Тема 3.2

Структурная организация фотосинтетического аппарата.

Лист как орган фотосинтеза. Хлоропласты, их строение, биохимический состав и функции. Биогенез хлоропластов. Пигментные системы фотосинтезирующих организмов. Хлорофиллы, их строение, химические и физические свойства. Функции хлорофиллов. Основные стадии и химизм реакций биосинтеза хлорофилла. Каротиноиды, их строение, классификация, свойства и функции. Билихромопротеины (фикобилины). Структура, свойства и функции билихромопротеинов. Распространение в растительном мире.

Тема 3.3

Организация и функционирование пигментных систем, механизмы преобразования энергии света растениями.

Поглощение света пигментами. Электронно-возбужденные состояния пигментов и типы дезактивации возбужденных состояний. Миграция энергии в системе фотосинтетических пигментов. Понятие о светособирающем комплексе, фотосинтетической единице и реакционных центрах. Структурнофункциональная организация тилакоидной мембраны. Представление о молекулярной структуре, механизмах функционирования и взаимодействия двух фотосистем. Принцип организации и регуляция функционирования электрон-транспортной цепи фотосинтеза. Строение и роль отдельных элементов фотосинтетической электрон-транспортной цепи. Фотофосфорилирование, его типы, характеристика. Структура и механизм работы комплекса АТФ-синтазы.

Тема 3.4

Метаболизм углерода в процессе фотосинтеза.

Классификация растений по метаболизму CO_2 в фотосинтезе. C_3 -путь фотосинтеза, основные этапы, их характеристика. Природа первичного акцептора углекислоты. C_4 -путь фотосинтеза, его особенности и характеристика. Метаболизм углерода по типу толстянковых (САМ-цикл). Фотодыхание и метаболизм гликолевой кислоты (C_2 -путь).

Тема 3.5

Связь фотосинтеза с продуктивностью растений.

Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности. Фотосинтез и урожай. Урожай биологический и хозяйственный. Зависимость фотосинтеза от факторов внешней среды. Эндогенная регуляция фотосинтеза. Современные методы изучения фотосинтеза.

Раздел 4.ДЫХАНИЕ РАСТЕНИЙ

Тема 4.1

Значение дыхания в жизни растений.

Значение дыхания в жизни растений. История развития представлений о дыхании растений. ТеорияВ. И. Палладина. Показатели дыхания: интенсивность и дыхательный коэффициент.

Тема 4.2

Химизм дыхания.

Ферментные системы дыхания. Участие ферментов различных классов в дыхании. Дыхательные субстраты. Пути диссимиляции углеводов. Гликолиз, его суть, энергетика. Цикл ди- и трикарбоновых кислот, цикл Кребса-Корнберга. Окислительный пентозофосфатный цикл и его роль в метаболизме.

Использование в качестве дыхательных субстратов жиров и белков. Взаимосвязь превращения углеводов, белков и жиров.

Зависимость дыхания от внутренних и внешних факторов. Особенности дыхания растений.

Тема 4.3

Электрон-транспортная цепь дыхания, характеристика ее компонентов.

Митохондрии, их структура и функции. Электрон-транспортная цепь дыхания, характеристика ее компонентов. Окислительное фосфорилирование в электрон-транспортной цепи, энергетическая эффективность. Субстратное и окислительное фосфорилирование.

Раздел 5.ВОДНЫЙ ОБМЕН РАСТЕНИЙ

Тема 5.1

Физико-химические свойства воды и ее роль в растительных организмах.

Структура и физико-химические свойства воды. Роль воды в жизнедеятельности растений. Термодинамические основы водообмена растений: активность воды, химический потенциал воды, водный потенциал и его составляющие.

Тема 5.2

Поступление воды в растение.

Механизм транспорта воды через плазматические мембраны. Молекулярная организация и функция аквапоринов (водных каналов), регуляция их работы. Водный баланс растений. Градиент водного потенциала — движущая сила поступления и передвижения воды в клетках, тканях и растении. Закономерности поступления воды в клетку.

Тема 5.3

Корневая система как орган поглощения воды.

Нижний и верхний концевой двигатели. Корневое давление, его значение и зависимость от действия внешних факторов. Движущие силы восходящего тока воды. Вклад когезии и адгезии в транспорт воды по растению. Гуттация, ее механизм.

Тема 5.4

Транспирация.

Биологическое значение транспирации. Устьичная и внеустьичная транспирация. Строение устьиц и молекулярная физиология устьичных движений. Показатели траспирации: интенсивность, транспирационный коэффициент, коэффициент водопотребления. Влияние на транспирацию экзогенных и эндогенных факторов.

Раздел 6.МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ

Тема 6.1

Характеристика элементов минерального питания растений.

Элементы минерального питания, необходимые для жизнедеятельности растений. Макроэлементы: азот, фосфор, калий, сера, кальций, магний. Микроэлементы: железо, медь, марганец, цинк, молибден, кобальт, бор. Роль и функциональные нарушения при недостатке в растении микро- и макроэлементов. Структурная и каталитическая функция ионов в метаболизме растительной клетки.

Представления о взаимодействии ионов: антагонизм, синергизм, аддитивность. Молекулярные основы этих взаимодействий.

Тема 6.2

Поступление минеральных веществ.

Транспорт ионов через плазматическую мембрану. Пассивный и активный транспорт. Ионные каналы, их строение и функциональная активность. Роль транспортеров и транспортных АТФаз в поступлении элементов минерального питания в клетки. Структура и основные типы АТФаз. Значение регуляции мембранного потенциала для процессов поступления ионов в клетку.

Ближний транспорт ионов. Радиальное перемещение ионов в корне: симпластический и апопластический пути. Функции корневых тканей в радиальном транспорте. Дальний транспорт ионов в растении. Восходящий и нисходящий ток минеральных элементов и веществ в растении.

Пространственная организация ионного транспорта в корне.Интеграция и регуляция транспорта в целом растении.

Раздел 7.РОСТ И РАЗВИТИЕ РАСТЕНИЙ

Тема 7.1

Общие закономерности роста и развития растений.

Кривая роста. Определение понятий "онтогенез", "рост" и "развитие". Периодизация онтогенеза. Показатели роста растений.

Молекулярные и клеточные основы роста и развития. Классические и современные теории роста растяжением растительной клетки. Движение растений, тропизмы и настии. Локализация роста у растений. Полярность. Тотипотентность. Зависимость роста от почвенно-экологических факторов. Явление покоя, его адаптивная функция.

Тема 7.2

Фитогормоны как химические факторы, регулирующие рост и развитие растений.

Основные группы фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен. Новые гормоноподобные соединения: брассиностероиды, жасминовая и салициловая кислотыи др. Локализация биосинтеза фитогормонов в растении и их транспорт. Особенности действия фитогормонов на рост растений.

Тема 7.3

Синтетические регуляторы роста.

Синтетические регуляторы роста, их природа и использование: гербициды, ретарданты, регуляторы созревания и покоя, дефолианты.

Тема 7.4

Развитие растений.

Развитие растений, основные этапы развития. Жизненный цикл растений. Термопериодизм. Фотопериодизм. Регуляция фотопериодических реакций фитохромом. Физиология цветения и старения растений. Механизмы клеточной смерти у растений.

Раздел 8.ФИЗИОЛОГИЯ СТРЕССА

Тема 8.1

Понятие стресса, особенности стрессовых реакций у растений.

Стресс, адаптация, устойчивость. Триада Селье в приложении для растений. Обратимые и необратимые повреждения тканей и органов растения. Критические периоды воздействия стрессовых факторов на растения. Стресс, как основный фактор, лимитирующий продуктивность сельскохозяйственных растений.

Тема 8.2

Молекулярные и клеточные механизмы восприятия стрессовых сигналов.

Молекулярные и клеточные механизмы восприятия стрессовых сигналов. Роль Ca^{2+} и редокс-сигнализации в развитие первичной стрессовой реакции

Тема 8.3

Засоление почв.

Засоление почв, его причина и последствия для сельского хозяйста, биосферы и человечества. Молекулярные и клеточные механизмы повреждения растений при засолении. Механизмы солеустойчивости растений.

Тема 8.4

Действие пониженных и повышенных температур на растения.

Механизмы адаптации растений к изменению температуры. Физиолого-биохимическая природа устойчивости растений к отрицательным температурам.

Тема 8.5

Водный дефицит и засухоустойчивость растений.

Совместное действие на растение недостатка влаги и высокой температуры. Особенности устойчивости у мезофитов и ксерофитов.

Тема 8.6

Влияние на растение избытка влаги.

Влияние на растение избытка влаги, факторы, обусловливающие устойчивость растений при затоплении. Влияние гипоксии на растения, адаптивные изменения в условиях гипоксии.

Тема 8.7

Газоустойчивость растений.

Механизмы адаптации растений к газовому составу атмосферы.

Тема 8.8

Повреждение растений при патогенной атаке.

Повреждение растений при патогенной атаке. Молекулярные механизмы распознавания химических и физических сигналов патогенов на поверхности клетки. Система усиления стрессвого сигнала и развитие реакции гиперчувствительности. Механизмы устойчивости растений к патогенным организмам.

Раздел 9.ОСОБЕННОСТИ БИОХИМИЧЕСКОГО СОСТАВА РАСТЕНИЙ

Тема 9.1

Белковые вещества растений.

Природа аминокислот растениях. Протеиногенные В И непротеиногенные аминокислоты. Функции непротеиногенных аминокислот. Белки листьев растений. семян И Структурные, запасные каталитические белки. Особенности белкового состава зерновых, зернобобовых и масличных культур.

Тема 9.2

Углеводы растений.

Классификация углеводов. Основные моносахариды растений, их свойства и функции. Взаимопревращение моносахаридов и их производных. Олигосахариды растений, их свойства и функции.

Полисахариды растений. Запасные и структурные полисахариды: крахмал, инулин, целлюлоза, гемицеллюлоза, пектиновые вещества, галактаны, ксиланы, слизи и гумми. Строение, свойства и функции полисахаридов в растениях.

Тема 9.3

Растительные липиды.

Особенности липидного состава растительных организмов. Основные группы липидов растений: жирные кислоты, триглицериды, воска, фосфолипиды, гликолипиды, сульфолипиды, оксилипины. Их функции в растениях.

Особенности обмена липидов растений. Пути биосинтеза основных групп липидов. Глиоксилатный цикл и его физиологическая роль. Пути биодеградации липидов в растениях: α -, β - и ω -окисление. Оксигеназный путь биодеградации жирных кислот.

Тема 9.4

Органические кислоты и их обмен.

Содержание в растениях органических кислот алифатического ряда. Характерные особенности основных органических кислот растений. Функции органических кислот в растениях. Обмен органических кислот у высших растений.

Тема 9.5

Вторичные метаболиты растений.

Понятие «вторичные метаболиты» растений. Общая характеристика и роль вторичных метаболитов в растении.

Тема 9.6

Фенольные соединения.

Биоразнообразие фенольных соединений растений. Фенолы, фенольные кислоты, фенилпропаноиды, кумарины, флавоноиды, димерные и полимерные фенольные соединения (лигнаны, лигнины, танины, меланины). Строение, распространение в растительном мире и функции в растениях.

Тема 9.7

Алкалоиды растений.

Природа и классификация алкалоидов растений. Истинные, прото- и псевдоалкалоиды растений — распространение в растительном мире и особенности биосинтеза. Функции алкалоидов в растениях.

Тема 9.8

Терпеноиды (изопреноиды).

Природа и распространение терпеноидов растений. Классификация терпеноидов: геми-, моно-, сескви-, ди-, сестер-, три-, тетра-, политерпены. Их локализация и функции в растениях.

Тема 9.9

Гликозиды.

Природа и распространение гликозидов в растениях. Классификация гликозидов. Особенности строения тиольных, цианогенных, фенольных и кардиотинических гликозидов. Роль гликозидов в жизни растений.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература:

- 1. *Юрин В.М.* Физиология растений. Учебник / В.М. Юрин. Минск: БГУ, 2010.
- 2. *Медведев С.С.* Физиология растений. Учебник / С.С. Медведев. СПб.: БХВ-Петербург, 2012
- 3. *Алехина Н.Д.* Физиология растений. Учебник для студентов вузов / Н.Д. Алехина, Ю.В. Балнокин, В.Ф. Гавриленко и др. М.: Издательский центр «Академия», 2005.
- 4. *Кузнецов В.В.* Физиология растений. Учебник для вузов / В.В. Кузнецов, Г.А. Дмитриева. М.: Высшая школа, 2005.
- 5. *Полевой В.В.* Физиология растений / В.В. Полевой. М.: Высш. шк., 1989.
- 6. *Третьяков Н.Н.* Физиология и биохимия сельскохозяйственных растений. Учебник / Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др. М.: Колос, 1998.
- 7. Φ илипцова Γ . Γ . Φ отосинтез: пособие / Γ . Γ . Φ илипцова, О.В. Молчан. Минск: БГУ, 2017.
- 8. *Якушкина Н.И*. Физиология растений. Учебник для студентов вузов, обучающихся по специальности «Биология» / Н.И. Якушкина, Е.Ю. Бахтенко. М.: Гуманитар. изд. центр ВЛАДОС, 2005.

Дополнительная литература:

- 9. *Албертс Б.* Молекулярная биология клетки. Т.5. / Б. Албертс, Д. Брей, Дж. Льюис, М. Рэфф, К. Робертс, Дж. Уотсон. М.: Мир, 1987.
- 10. *Гавриленко В.Ф.* Избранные главы физиологии растений. Учебное пособие / В.Ф. Гавриленко, М.В. Гусев, К.А. Никитина, П.М. Хофман. М.: МГУ. 1986.
- 11. *Гудвин Т.* Введение в биохимию растений. Т. 1 и Т. 2. / Т. Гудвин, Э. Мерсер. М.: Мир, 1986.
- 12. Кнорре Д.Г. Биологическая химия / Д.Г. Кнорре, С.Д. Мызина. М.: Высшая школа, 1998.
- 13. Терминология роста и развития растений / Под ред. М.Х. Чайлахяна. М.: Наука, 1983.
- 14. *Филипцова Г.Г.* Биохимия растений: учебное пособие / Г.Г. Филипцова, И.И. Смолич. Минск: БГУ, 2004.
- 15. *Щербаков В.Г.* Биохимия / В.Г. Щербаков, В.Г. Лобанов, Т.Н. Прудникова и др. СПб.: ГИОРД, 2003.