А. В. СИДОРОВ

ВЛИЯНИЕ КОЛЕБАНИЙ рН НА ВЫРАЖЕННОСТЬ ОБОРОННИТЕЛЬНЫХ РЕАЦИЙ МОЛЛЮСКА LYMNAEA SPROLIS

Белорусский государственный университет, Минск
(Поступила в редакцию 11.09.2006)

Введение. Инициация, корректное протекание и завершение большинства стандартных (фиксированных) поведенческих программ невозможны без постоянного притока сенсорной информации к нервной системе (ЦНС). При этом одна из ключевых ролей отводится тактильным стимулам, активирующим механорецепторы кожи. Благодаря наличию данных структур существует также возможность постоянного контроля за тем или иным типом поведения по принципу обратной связи (помпельной или отрицательной). Тем не менее интимные механизмы обработки данных сигналов в ЦНС остаются слабо изученными.

Особенностью организации нервной системы целого ряда беспозвоночных является наличие в ее составе крупных (диаметром около 100 мкм) клеток, для которых точно известна позиция в составе нейронной сети, т. е. выполняемая функция [1]. Подобная глубина анализа, в настоящий момент, почти не достигнута применительно к высшим позвоночным, включая и мозг человека.

Несомненно, что величина рН выступает в качестве одного из факторов объемной передачи сигнала (volume transmission) и относится к так называемым доступно-кодируемым сигналам [6]. Это означает, что практически любая клетка ЦНС способна реагировать на изменение уровня рН межклеточной жидкости (интерстиция), оказывающего генерализованное действие на нейроны. При этом в ответную реакцию вовлекается целая совокупность клеток ткани, а не отдельные ее единицы.

Цель данной работы - установить наличие (отсутствие) связи между величиной рН гемолимфы и степенью выраженности оборонительного поведения Lymnaea stagnalis, а также возможные изменения реакций идентифицированных нейронов и синапсов оборонительной сети при колебаниях уровня рН внутренней среды.

Для исследования оборонительных реакций моллюски помещались в наполненные отстоявшейся водопроводной водой чашки Петри (по 5 особей в каждой). Визуально фиксировался ха-
рактер реакции животного в ответ на тактильное раздражение щупальца волоском Фрея (с силой воздействия 8 · 10⁻⁴ Н или 5 · 10⁻⁴ Н). В порядке усиления оборонительного характера выделялись следующие типы ответов (по [7] с изменениями): 1 — игнорирование стимула; 2 — отведение щупальца; 3 — ретракция (втягивание) щупальца; 4 — надвигание раковины на передний конец тела; 5 — полное прикрытие тела раковиной. Латентный период прорастания определяли как время, прошедшее с момента помещения моллюска в новые условия (из аквариума в чашку Петри) до начала его выдвижения из раковины и последующей локомоции.

Аналіз гемолимфы на величину рН проводили следующим образом. Сильной тактильной стимуляцией подошвы ноги вызывали реакцию полного втягивания тела, сопровождающуюся выбросом значительной части гемолимфы [8]. Значение рН полученной пробы, объемом 1—2 мл, определяли при помощи рН-метра PerpHecT, Model 310 (ATI Orion, USA) при 25 °C.

Для изучения корреляционной связи между величиной рН гемолимфы и показателями оборонительного поведения применяли уравнение регрессии. При этом реакции моллюсков в ответ на тактильное раздражение щупальца волоском Фрея были оценены в условных баллах от 0 (отсутствие реакции) до 4 (полное прикрытие тела раковиной).

Инъекцию гемолимфозамещающих растворов производили путем прокола ноги. Внутрь полости тела вводили 0,4—0,5 мл раствора Рингера (состав см. ниже) с рН 7,5 (контроль), рН 6,0 («кислый» раствор) и рН 9,0 («щелочной» раствор). Операцию проводили с максимально возможной скоростью, чтобы минимизировать потери гемолимфы вследствие активации реакции полного втягивания тела. После инъекции моллюсков оставляли в покое на 5—10 мин и только после выдвижения из раковины и начала движения начинали тестирование.

Электрофизиологические эксперименты выполнены на препаратах изолированной ЦНС. Выведение препаратов по описанной ранее методике [9]. Препараты предварительно обрабатывались для размачивания периневральной оболочки и облегчения проникновения микроэлектродов в нейроны раствором проназы (Protease E, type XIV, Sigma, США) в концентрации 1 мг/мл, приготовленной на нормальном физиологическом растворе для Lymnaea stagnalis в течение 5 мин при температуре 20 °C. Регистрацию электрической активности нейронов проводили после промывки обработанного таким образом препарата свежим физиологическим раствором в течение 30 мин. Внутриклеточная регистрация электрических параметров нейронов осуществлялась с помощью Ag/AgCl-электродов. Микропипетки заполнялись 2,5 молярным раствором КCl и имели сопротивление 10—40 МОм. В качестве индифферентного электрода использовалась хлорированная серебряная проволока. Усиленные электрические сигналы регистрировались на ленте самописца H327—3 и параллельно отражались на экране запоминающего осциллографа С1—74. Для перфузии (0,1 мл/мин постоянно и до 5 мл/мин при смене раствора с новым рН) препаратов изолированной нервной системы использовался нормальный физиологический раствор (концентрации указаны в молях): NaCl — 44; KCl — 1,7; CaCl₂ — 4; MgCl₂ — 6; H₂O — 1,5; HEPES — 10. Значение рН для внесклеточного раствора составляло: 6,5, 7,5, 8,5 ± 0,03 для каждого. Нейроны идентифицировались по размеру, расположению в пределах ЦНС, цвету, электрофизиологическим характеристикам потенциала действия, величине потенциала покоя, паттерну спонтанной активности. Работа выполнена на клетках, вовлеченных в реализацию оборонительного поведения Lymnaea stagnalis: RPaD1, LP1 и LPaV1 (как согласно классификации P. Benjamin и W. Winlow [10]).

Экспериментальные данные обрабатывались общепринятыми методами вариационной статистики [11]. Число наблюдений (n) указано для каждой серии опытов отдельно. Данные представлены в виде x ± Sₓ. Достоверность полученных результатов оценивалась при помощи t-критерия Стьюдента или критерия соответствия хи-квадрат (χ²). Достоверными считались результаты при уровне значимости (P), меньше 0,05.

Результаты и их обсуждение. Для пресноводных легочных моллюсков характерно пассивно-оборонительное поведение — при опасности животное прикрывает тело раковиной. При этом степень прикрытия прямо пропорциональна силе внешнего воздействия. В случае очень сильной и/или длительно повторяющейся тактильной стимуляции у моллюсков запускается реакция полного втягивания тела, сопровождающаяся выбросом гемолимфы. При этом плавучесть животного

88
становится отрицательной, и оно падает на дно водоема, спасаясь, таким образом от раздражающего воздействия (при нахождении в водной среде) или еще больше втягивается в раковину (при нахождении на суше).

Изучение корреляционной связи между величиной рН гемолимфы и характером реакции животного в ответ на тактильную стимуляцию (сила воздействия 5 · 10⁻³ Н) показало (рис. 1) наличие положительной корреляции: \(r = +0.257, n = 74 \) \(P < 0.05 \). В то же время статистически достоверной корреляции между рН гемолимфы и латентным периодом протракции выявлено не было \((r = -0.274, n = 40) \) \(P > 0.05 \).

Анализ реакций моллюска на тактильную стимуляцию щупальца волоском Фрея вызвал резкое уменьшение ответов оборонительной направленности при инъекции в полость тела животного «кислых» гемолимфозаменяющих растворов (рис. 2). Указанная тенденция сохраняется как при использовании слабых \((8 \cdot 10^{-1} \text{Н}) \), так и сильных \((5 \cdot 10^{-3} \text{Н}) \) тактильных раздражителей. В последнем случае наблюдается лишь смещение пика распределения ответов на одну категорию вправо, т. е. в сторону сильных оборонительных реакций: с ответа типа 2 (отведение щупальца) до ответа 3 (ретракция щупальца) в случае введения «кислого» раствора и с ответа типа 3 до ответа типа 4 (надвигание раковины на передний конец тела) в случае инъекции «щелочного» раствора. Указанные различия носили статистически достоверный характер: \(\chi^2 = 17.07, n = 20 \) для серии, \(P < 0.01 \) при инъекции «кислого» и \(\chi^2 = 13.99, n = 20 \) для серии, \(P < 0.01 \) при инъекции «щелочного» растворов. Обращает на себя внимание и значительное увеличение доли ответов, связанных с игнорированием стимула в случаях слабой тактильной стимуляции при низких значениях рН гемолимфозаменяющего раствора.

Инъекция «щелочного» гемолимфозаменяющего раствора вызывает почти 2-кратное (в 2,8 раза), достоверное \((P < 0.01) \) увеличение латентного периода протракции: с 7,95 ± 0,90 с (рН = 7,5) до 22,21 ± 1,99 с (рН = 9,0). В то же время введение «кислого» раствора достоверно не изменяет рассматриваемый показатель \((10,87 ± 1,23 \text{ с}) \) по сравнению с контрольным значением, хотя различия между экспериментальными группами животных по прежнему сохраняются, причем с достаточно высокой \((P < 0.01) \) степенью достоверности.

![Рис. 1. Корреляционная связь между величиной рН гемолимфы и степенью выраженности оборонительного поведения для Lymnaea stagnalis. Каждая точка соответствует пробе гемолимфы, полученной от одного моллюска, и отражает суммарную реакцию на 5 последовательных (с интервалом в 15 мин) тактильных стимулов (сила воздействия 5 · 10⁻³ Н). Указано уравнение регрессии](image)

![Рис. 2. Влияние рН гемолимфозаменяющего раствора на характер реакции моллюска в ответ на тактильную стимуляцию щупальца: A — сила воздействия 8 · 10⁻⁴ Н, B — сила воздействия 5 · 10⁻³ Н; темные квадраты — рН 6,0, светлые квадраты — рН 9,0. Указано значение \(\chi^2 \) и уровень значимости \(P \). Данные получены при анализе поведения 20 моллюсков для каждой серии](image)

89
Установлено, что раствор Рингера с pH 6,5 вызывает выраженную (на 10,2±1,3 mV, n = 5), быструю (в течение 10 с) гиперполяризацию сенсорного нейрона RPaD1 (рис. 3, А). При этом значительно увеличивалась амплитуда спонтанных потенциалов действия, становился выраженным пачечный (залповый) режим активности указанной клетки. Нормализация кислотно-основного равновесия восстанавливает исходный паттерн RPaD1 только по прошествии длительного (1–2 мин) интервала после возвращения к исходным условиям. Защелачивание (раствор Рингера с pH 8,5) не приводит к выраженным изменениям спонтанной электрической активности RPaD1.

Анализ спонтанной электрической активности показал заметно выраженное (в 2 раза и более) снижение амплитуды спонтанных постсинаптических потенциалов в сенсорных нейронах RPaD1 и LP1 (n = 6) и командно-оборонительном нейроне LPaV1 (n = 4), наблюдаемое на фоне гиперполяризации мембраны данных клеток (рис. 3, Б).

В настоящий момент не существует экспериментальных данных, позволяющих говорить о наличии центрального генератора оборонительного ритма. Тем не менее целый ряд клеток вовлечен в регуляцию и модуляцию пассивно-оборонительного поведения Lymnaea stagnalis. В частности, не вызывает сомнения участие нейрона RPaD1 в обработке и передаче различной сенсорной информации [12]. Другим звеном, интегрированным в оборонительную сеть предводика, является LP1. Данная клетка – ярко выраженный гомолог RPaD1, в пользу чего, помимо выполняемых обших функций, говорит их одинаковая химическая природа — оба нейрона это FMRFamid-содержащие клетки [13] и нахождение LP1 и RPaD1 под влиянием общих мощных тормозных синаптических входов. В результате указанные клетки часто не проявляют спонтанной спайковой активности [10], что в нашем случае оказывалось справедливым лишь по отношению к LP1. Роль гомологичных им клеток у Aplysia (нейрона R2 и LP1) в реализации оборонительного поведения можно считать доказанной [14]. Гигантский нейрон на вентральной поверхности левого париетального ганглия (LPaV1) в качестве командно-оборонительного был впервые описан L. L. Moroz и W. Winlow [15]. При этом подчеркивалась его возможная гомология с аналогичными клетками, обнаруживаемыми в составе ЦНС других моллюсков, в частности виноградной улитки (Helix pomatia).

Ослабление оборонительных реакций, коррелирующее с пониженным значением pH гемолимфы, может играть значимую роль при реализации пищедобывательной и дыхательной поведенческих программ, поскольку их нормальное протекание невозможно при выраженной оборонительной активности нейронов RPaD1.
нительной доминанте. Косвенным подтверждением данного тезиса служат обнаруженные ранее различия в дыхательной активности и рН гемолимфы у сьятых и голодных животных [5].

Снижение амплитуды спонтанных синаптических потенциалов, вызываемое закислением внеклеточной жидкости и происходящее на фоне значительной гиперполяризации постсинаптической клетки, свидетельствует о преосновной характере рассмотренных явлений. Действительно, в случае действия высокой концентрации H⁺ только лишь на мембрану постсинаптической клетки, ожидалось увеличение амплитуды постсинаптических потенциалов. Одной из причин, опосредующих уменьшение эффективности химических сигналов при низких значениях внеклеточного рН, может быть инактивация Ca²⁺-каналов преосновных терминалов [16]. Как следствие, происходит нарушение процесса высвобождения медиатора в постсинаптическую щель, поскольку указанный процесс демонстрирует сильнеешую Ca²⁺-зависимость. В свою очередь, влияние сдвигов рН на уровень мембранного потенциала, частоту генерации и амплитуду потенциала действия могут быть объяснены с позиции модуляции Na⁺/K⁺-ATФазы [17] при отклонениях кислотно-основного равновесия от базального уровня. В то же время имеются экспериментальные свидетельства, что при низких (7,5 ед. и ниже) значениях внеклеточного рН наблюдается уменьшение ответа нейронов Lynnaea stagnalis на экзогенную апикалину некоторых нейромедиаторов, в частности ацетилхолина [19]. При этом защемление не вызывает выраженных изменений проводимости мембраны клетки при апикализации ацетилхолина. Предполагается [20], что в данные реакции вовлечены инактивации некоторых сайтов связывания ацетилхолинового рецептора вследствие их взаимодействия с избыточным количеством H⁺ во внеклеточной среде.

Заключение. Колебания рН внутренней среды являются одним из факторов, определяющих формирование оборонительных реакций моллюсков. Их действие реализуется на уровне синаптической передачи сигнала в нейронных сетях, опосредующих реализацию пассивно-оборонительного поведения животных.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (проекты Б02М−045, Б05М−055).

Литература

1. К о н и д е л Э. Клеточные основы поведения. М., 1980. С. 181−238.
7. Д ы х о н о в А. В. Регуляторные функции экзогенной огониальной системы моллюсков: Автореф. дис. ... канд. биол. наук. М., 1996.
Correlation between haemolymph acid-base balance (pH) value and defensive behaviour of fresh-water pond snail *Lymnaea stagnalis* was studied. It was measured that haemolymph acidation (pH lower 7.0) decrease mollusc's defensive reactions in response to skin tactile stimulation. Alkalization of haemolymph (pH over 8.0) results in opposite response. Electrophysiological experiments on identified defensive neurons (RPaD1, LP1 and LPaVI) show that reduction of conductance via chemical synapses within *Lymnaea*’s CNS underlies mentioned above changes in mollusc's defensive behaviour.